
Database Patchwork on the Internet�

Reinhard Braumandl Alfons Kemper

Universität Passau
94030 Passau, Germany

hlastnamei@db.fmi.uni-passau.de

Donald Kossmann

1 Overview
Naturally, data processing requires three kinds of resources:

� the data itself,

� the functionality (i.e. database operations) and

� the machines on which to run the operations.

Because of the Internet we believe that in the long run there
will be alternative providers for all of these three resources
for any given application.Data providerswill bring more
and more data and more and more different kinds of data
to the net. Likewise,function providerswill develop new
methods to process and work with the data; e.g., function
providers might develop new algorithms to compress data
or to produce thumbnails out of large images and try tosell
these on the Internet. It is also conceivable, that some people
allow other people to use spare cycles of their idle machines
in the Internet (as in the Condor system of the University
of Wisconsin) or that some companies (cycle providers)
even specialize on selling computing time to businesses that
occasionally need to carry out very complex operations for
which regular hardware is not sufficient.

Unfortunately, we are still a far cry from such an open data
processing marketplace. What we can already see today is a
growing number of data (content) providers, but we can only
see a few function providers and virtually no cycle providers.
The reason is that there is an asymmetry in the Internet: due
to protocols like http or OLE or CORBA, it is possible to
move data around in the Internet, but it is not yet as easily
possible to move functionality around in the Internet. The
only two ways to provide new functionality is (1) to develop
Java applets or browser plug-ins, which can be executed at

�This work is part of the ObjectGlobe project, which is supported by
the German National Research Foundation DFG under contract Ke 401/7-1

client machines, or (2) to develop middleware systems—in
both ways, the data must be shipped to the functionality,
which can be prohibitively expensive, if large amounts of
data must be processed, and it is not possible to ship the
functionality to the data or to ship both the functionality and
the data to machines, which are located near the data and
particularly suited to carry out the operations.

At the University of Passau, we are currently developing
a distributed database system to be used in the Internet. The
goal is to ultimately have a system which is able to run on
any machine, manage any kind of data, import any kind of
data from other systems and import any kind of database op-
erations. The system is entirely written in Java. One of the
most important features of the system is that it is capable
of dynamically loading (external) query operators, written
in Java and supplied by any function provider, and execut-
ing these query operators in concert with pre-defined and
other external operators in order to evaluate a query. Com-
pared to object-relational database systems, which allow to
integrate external data and functionality by the means of ex-
tensions (datablades, extenders or cartridges) or heteroge-
neous database systems such as Garlic [MS97] or Tsimmis
[GMPQ+97], our approach makes it possible to place exter-
nal query operators anywhere in a query evaluation plan as
opposed to restricting the placement of external operations
to the "access level" of plans. It would, for example, be pos-
sible to make our system execute a completely new relational
join method, if somebody finds a new join method which is
worth-while implementing. Because our system is written in
Java, it is highly portable and could be used by data, function
and cycle providers with almost no effort. Furthermore, our
query engine is, of course, completely distributed providing
all the required infrastructure for server-server communica-
tion, name services, etc.

2 Example Applications
In the following we describe some applications, which could
benefit from the usage of our query engine or just become
possible by the use of a system like ours.

Travel Agency: There are a lot of web pages available
today, which help to plan an individual journey by



finding hotel rooms, flights and special events, taking
place at the chosen destination. But these web sites
normally work by materializing the whole information
in a local database. Therefore the given information
may be outdated or inaccurate. A further weak point
is the lacking possibility to perform joins on several
interesting entities. For example, if you want to book
a flight to Sydney and a hotel room there, you normally
have to consult two different forms and do the join on
date on your own. It is also hard work to integrate a new
data source for example a car rental agency or a foreign
railway company.

Such an application developed within our system would
integrate remote data sources for hotels, flights, car
rentals and so on by the means of wrappers. Therefore
the data would be as up-to-date and as consistent as
the original data source is providing them. A classic
middleware system could also solve the join problem,
but it does not scale well in the Internet. Suppose we
want to compute a join between hotels and car rentals
in the surroundings of New York, Tokyo and Rome.
The middleware system has to fetch all the data from
the different sources located near the mentioned cities
and performs the join at a second tier server. In our
system we could perform a local join at servers located
near the mentioned cities and unite the results at an
intermediate server or the client. New data sources can
be embedded in our system at run time by dynamically
loaded wrappers.

Research in Distributed Database Systems:A great hand-
icap in research efforts for distributed database systems
is the lack of real world testing possibilities. No research
group has the chance to test new plans or operators in an
environment with several hundred participating sites dis-
tributed over the whole Internet.

Since our query processor is very portable, it would be
no problem to install a version of it at computers be-
longing to interested research groups. All these instal-
lations could form one big distributed database accessi-
ble by every participating group. Due to the dynamic
extensibility, tests and benchmarks with new operators
and wrappers would not need any administrative effort
by any other group except the one doing the test. But
this group will only have to do some configuration on
their own installation. The other servers stay untouched
by them.

Others: The extensibility of our system at run time can be
exploited in quite a large number of applications. For
space restrictions we only give some short descriptions
of a few of them.

� Dynamically loaded complex predicates could be used
for selections on image contents during an access of a
remote and large image collection.

� Dynamically loaded wrappers could be used for gen-
erating index entries of web pages in Australia for a
search engine located in Germany.

� Dynamically loaded operators could be used for inte-
grating new operators in query evaluation plans, for
example operators for specialized compression tech-
niques, operators for the efficient processing of "top
N" queries, operators for ranking intermediate result
objects or new index based join operators.

3 The Implementation of our Query
Processor

We used Java as the implementation language for our query
processor. Since this language was especially designed for
distributed, dynamically extensible applications, it seemed
to be the right choice. The key objectives of our query
processor, namely portability, security (discussed in Section
3.4) and extensibility, could not have been realized in
this extent without Java. This programming language has
spread at an enormous speed the last few years. A Java
VM is available for nearly every computer platform and
with it our query processor can run on these platforms.
The extensibility is achieved by the dynamic class loading
mechanism of Java and the use of special (Java-) interfaces,
which are provided by us. These would be the interfaces,
through which dynamically loaded code could interact with
the query processor. At the moment we support two
interfaces:

� In our query engine there is an interface for objects,
which are responsible for performing predicate evalua-
tion on data elements. By the use of this interface users
can integrate their own specialized predicates.

� Implementing our interface for iterators in a self-written
class is another possibility to be able to incorporate
objects into a running server process. In this way new
wrappers, user definied functions or iterators can be
added to the query engine at run time. All of the example
applications mentioned above are using this feature.

In summary our server program (which contains the query
processor) is able to provide the following services:

� Exporting data, which is locally managed by the server
process itself.

� Providing some core functionality, which can be used by
queries or sub-queries running on that server.

� Accepting (parts of) query evaluation plans for execu-
tion, in order to exploit idle machine resources.

In the following we give an overview of our implementa-
tion.



3.1 Execution Engine Basics

The overall architecture of our query processor is based on
the iterator model. We also adopted proposed extensions
to this model to support distributed and parallel execution
(Send- and Receive-iterators) of query evaluation plans in
an iterator-based query processor. See [Gra90, Gra93] for
details of the iterator model and the mentioned extensions.

3.2 Query Evaluation Plans

The starting point for a distributed query evaluation is a plan,
which looks like a plan for local query processing. The only
difference is the existence of three additional annotations
for each iterator in this plan. One annotation denotes
the execution server for this iterator, another indicates if
this iterator (together with the whole subtree rooted at this
iterator) should be executed in a new thread. The last
additional annotation is a URL, which points to the code for
that iterator.

The client machine then starts with a depth-first traversal
of the plan in order to instantiate the iterators. If we find
an iterator with a site annotation different from the local
machine, the iterator together with the subtree rooted at it
is sent to the specified site and the traversal starts anew for
that subtree. The communication link between the two parts
of the distributed plan is provided by the runtime system.

The actions for the threading annotations look similar but
are handled with a higher priority during plan distribution
than the ones for site annotation. The execution of iterator
subtrees in separate threads can be used for exploiting a
multi-processor machine, but its main purpose in our system
is to reduce the effect of slow communication links.

If the code URL of an iterator points to a WWW-server,
the Java class loader local to the query fetches the particular
class. Of course predefined iterators can be loaded from the
local code base of the server and need not be requested over
the network.

3.3 Generating Query Evaluation Plans

In order to test various plans without the interaction of an
optimizer, there exists the possibility to specify a query
evaluation plan in the form of an XML document. This
way is also suitable for composing plans with new operators
embedded. For the creation of such a document an XML
editor could be used. The XML document can be further
enriched with information about parameters needed for the
execution of a plan, just like host variables in embedded
SQL. We have built a servlet, which uses this information
to create an HTML form and presents this form to the user.
After the user has specified the values for the parameters,
the servlet instantiates the query evaluation plan, initiates the
execution of the query and transforms the query result into
an HTML page.

The optimization of queries in the context of our query
processor is an ongoing work. Currently we have an opti-
mizer capable of generating plans in the way the optimizer

used in the Garlic project [HKWY97] works. But as stated
earlier our system is more flexible than the Garlic approach,
which means that optimization will be more difficult.

3.4 Security
The security problem we are talking about in this section
goes beyond authorization or authentication normally ad-
dressed in discussions about this subject in database systems.
Obviously, a distributed system like ours must support au-
thorization and authentication like any other database. In
addition, special security issues arise from the extensibility.
Code supplied by a user can be executed at any server-site.
Without special security precautions nobody would be will-
ing to run a copy of our query processor on their sites. The
imported code has to be executed in a "sandbox" protecting
the server machine from hostile users. Fortunately, Java 2
provides a rich framework for solving such security issues,
which we used in our implementation.

4 Conclusion
We have installed our system on several sites at the Univer-
sity of Passau and, for testing in a larger scale environment,
at the University of Mannheim and the University of Mary-
land, CP. We demonstrate how it works with a small "demo"
travel agency application as described in Section 2.

References
[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou,

D. Quass, A. Rajaraman, Y. Sagiv, J. D.
Ullman, V. Vassalos, and J. Widom. The
TSIMMIS approach to mediation: Data
models and languages. Journal of Intel-
ligent Information Systems, 8(2):117–132,
March/April 1997.

[Gra90] G. Graefe. Encapsulation of parallelism in the
volcano query processing system. InProc. of
the ACM SIGMOD Conf. on Management of
Data, pages 102–111, Atlantic City, NJ, USA,
June 1990.

[Gra93] G. Graefe. Query evaluation techniques for
large databases.ACM Computing Surveys,
25(2):73–170, June 1993.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and
J. Yang. Optimizing queries across diverse
data sources. InProc. of the Conf. on Very
Large Data Bases (VLDB), pages 276–285,
Athens, Greece, August 1997.

[MS97] M. Tork Roth and P. M. Schwarz. Don’t scrap
it, wrap it! A wrapper architecture for legacy
data sources. InVLDB’97, Proc. of the Conf.
on Very Large Data Bases (VLDB), pages
266–275, Athens, Greece, August 1997.


